Scalable lattice Boltzmann solvers for CUDA GPU clusters

نویسندگان

  • Christian Obrecht
  • Frédéric Kuznik
  • Bernard Tourancheau
  • Jean-Jacques Roux
چکیده

The lattice Boltzmann method (LBM) is an innovative and promising approach in computational fluid dynamics. From an algorithmic standpoint it reduces to a regular data parallel procedure and is therefore well-suited to high performance computations. Numerous works report efficient implementations of the LBM for the GPU, but very few mention multi-GPU versions and even fewer GPU cluster implementations. Yet, to be of practical interest, GPU LBM solvers need to be able to perform large scale simulations. In the present contribution, we describe an efficient LBM implementation for CUDA GPU clusters. Our solver consists of a set of MPI communication routines and a CUDA kernel specifically designed to handle three-dimensional partitioning of the computation domain. Performance measurement were carried out on a small cluster. We show that the results are satisfying, both in terms of data throughput and parallelisation efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling Lattice Boltzmann Gas and Level Set Method for Simulating Free Surface Flow in GPU/CUDA Environment

We present here a proof-of-concept of a novel, efficient method for modeling of liquid/gas interface dynamics. Our approach consists in coupling the lattice Boltzmann gas (LBG) and the level set (LS) methods. The inherent parallel character of LBG accelerated by level sets is the principal advantage of our approach over similar particle based solvers. Consequently, this property allows for effi...

متن کامل

The TheLMA project: a thermal lattice Boltzmann solver for the GPU

In this paper, we consider the implementation of a thermal flow solver based on the lattice Boltzmann method (LBM) for graphics processing units (GPU). We first describe the hybrid thermal LBM model implemented, and give a concise review of the CUDA technology. The specific issues that arise with LBM on GPUs are outlined. We propose an approach for efficient handling of the thermal part. Perfor...

متن کامل

Performance engineering for the Lattice Boltzmann method on GPGPUs: Architectural requirements and performance results

GPUs offer several times the floating point performance and memory bandwidth of current standard two socket CPU servers, e.g. NVIDIA C2070 vs. Intel Xeon Westmere X5650. The lattice Boltzmann method has been established as a flow solver in recent years and was one of the first flow solvers to be successfully ported and that performs well on GPUs. We demonstrate advanced optimization strategies ...

متن کامل

A Lattice-Boltzmann solver for 3D fluid simulation on GPU

A three-dimensional Lattice-Boltzmann fluid model with nineteen discrete velocities was implemented using NVIDIA Graphic Processing Unit (GPU) programing language ‘‘Compute Unified Device Architecture’’ (CUDA). Previous LBM GPU implementations required two steps to maximize memory bandwidth due to memory access restrictions of earlier versions of CUDA toolkit and hardware capabilities. In this ...

متن کامل

A Holistic Scalable Implementation Approach of the Lattice Boltzmann Method for CPU/GPU Heterogeneous Clusters

Heterogeneous clusters are a widely utilized class of supercomputers assembled from different types of computing devices, for instance CPUs and GPUs, providing a huge computational potential. Programming them in a scalable way exploiting the maximal performance introduces numerous challenges such as optimizations for different computing devices, dealing with multiple levels of parallelism, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Parallel Computing

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2013